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In the present paper we construct and study the simplest model of self-assembled monolayer (SAM) with
several different orientations of complicated organic molecules with respect to the interface. In order to
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study the model we used transfer-matrix and Monte Carlo techniques. It was shown that the structures of
the model ordered phases are analogous to the structures of real SAMs. Our model of SAMs demonstrates
the non-monotonous dependence of the total coverage versus pressure (chemical potential), i.e. at the
increase of pressure the empty surface area can grow that can take some effect on physicochemical
processes on surface.

© 2009 Elsevier B.V. All rights reserved.
ransfer-matrix method

. Introduction

Self-assembled monolayers (SAMs) of complicated organic
olecules can be formed on the solid/gas [1], solid/liquid [2],

r liquid/gas [3] interfaces. SAMs have numerous applications
or thin films containing these materials including gas sensing,
atalysis, light emitting diodes, nonlinear optics, molecular-based
nformation storage, coating for the protection of surfaces from
orrosion and so on [1–4]. For example the aromatic molecule p-
exiphenil (p-6P) has been used in the active layer of an organic
lue-light-emitting diode [1]. One of the most interesting fea-
ures of these systems is the possibility of two or more different
rientations of complicated organic molecules with respect to
he interface [1–3,5,6]. The possible orientation depends on con-
entration, pressure, temperature, surface electric potential and
ther parameters. It should be noticed that there are the ordered
tructures which contains the molecules with two different ori-
ntations (for example—p-Sexiphenil on the Au(1 1 1) surface in
ltrahigh vacuum) [1]. Existence of several molecule orientations
ith respect to the interface results in the dependence of the aver-
ge interface area per molecule on the pressure or other parameters.
s an example we can refer to [3], where the surface pressure–area

sotherms (area per molecule versus surface pressure curves) of
etrapyridylporphyrin monolayers on pure water and water solu-

∗ Corresponding author.
E-mail addresses: fefelov vasiliy@mail.ru (V.F. Fefelov), vitaly gorbunov@mail.ru

V.A. Gorbunov), myshl@omgtu.ru (A.V. Myshlyavtsev).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.04.036
tions containing Cd2+ or Cu2+ were obtained. It was shown that
molecule area decreases with the growth of surface pressure.

The goal of presented work is the construction and study of
the simplest SAMs model with several orientations of complicated
organic molecules with respect to the interface. We elaborated the
model with several ordered structures including the structure with
two types of molecule orientations. It should be noticed that at
present time the theoretical study of the monolayers of the compli-
cated linear [7–14] or nonlinear [4,9,10,15–17] molecules is in the
very beginning.

2. Model

It is well known that a lattice gas model is a very good approx-
imation for chemisorptions [18–20], and we consider the one as
the SAMs model. The simplest model with two different molecule
orientations with respect to surface have been recently studied
[7,14]. This model is the dimer model with two possible orienta-
tions with respect to surface: in parallel occupying the two nearest
active centers and transversally occupying the only one. It should
be noticed that in the framework of the model the direct propor-
tionality between the surface coverage and the number of adsorbed
particles is broken.

The molecules adsorbed by the various ways can be differed by

their adsorption heats naturally. The different lateral interactions
between the adsorbed particles can be included in the model as
well.

As it was shown the presented model [14] demonstrates the
rich and non-trivial phase diagram. Let us describe qualitatively

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:fefelov_vasiliy@mail.ru
mailto:vitaly_gorbunov@mail.ru
mailto:myshl@omgtu.ru
dx.doi.org/10.1016/j.cej.2009.04.036
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Fig. 1. The allowed configurations of the adsorbed particles. The small circles denote
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Langmuir model of adsorbed overlayer [18–21]. Thus we should
he mono-center adsorbed particles and the large circles denote the four-center
dsorbed particles. The numbers from 0 up to 5 denote all of the possible states of
he lattice cells.

he surface filling by the adsorbed particles with the pressure
ncreasing. We also assume that the adsorption heat at parallel
ocation is larger than that at perpendicular one. For model under
onsideration the surface filling takes place in the following way. At
he beginning at low pressures the most of the adsorbed particles
re placed in parallel with the surface. On the increase of the gas
hase pressure the molecules adsorbed transversally to the surface
egin to occur. Their portion gradually increases and the portion of
he molecules adsorbed in parallel to the surface begins to decrease.
inally, at the high pressures the most of the adsorbed particles are
laced transversally to the surface. Obviously, when the described
cenario is realized the direct proportionality between the number
f adsorbed molecules and the surface coverage is absent. However,
s the numerical results display, in the framework of this model the
ependence of the surface coverage on the pressure is monotonic
s before. Let us generalize the considered model of the dimer
dsorption and elaborate the lattice gas model for adsorption
f the complicated molecules. We assume the molecule can be
dsorbed on the surface by the k ways occupying the m1, m2, . . .,
k active centers located in the corresponding configurations on

omogeneous or heterogeneous lattice, respectively. One of the
implest models of this type (not counting the described model of
he dimer adsorption) is as follows.

We consider the homogeneous square lattice as the surface
odel and assume that the molecules can be adsorbed by only

wo different ways. At the first way the molecule occupies the one
ctive center and at the second way the molecule does the four
nes. These four centers form the square. Thus, for our model we
ave k = 2, m1 = 1, m2 = 4. We assume that a nearest neighborhood
etween two adsorbed molecules (independently of the adsorp-
ion way) is prohibited as well. The allowed configurations of the
dsorbed particles are schematically shown in Fig. 1. The difference
etween the heats of adsorption of the four-center location and the
ono-center one is noted as �. At positive value of � the sequence

f the surface filling by the adsorbate is quite analogous to that in
he case of the dimer adsorption. Evidently, as in the case of the
imer adsorption models the proportionality between the number
f adsorbed particles and the surface coverage is absent. Thermo-
ynamic Hamiltonian for the model under consideration can be
ritten as
= �

4

∑
i

ni + �

(
1
4

∑
i

ni +
∑

i

ci

)
, (1)
g Journal 154 (2009) 107–114

where the occupation numbers ci and ni are equal to unity for occu-
pied by molecule adsorbed on one and four sites respectively and
zero for empty sites; � is the chemical potential of the adsorbed
particles.

3. Phase diagram in the ground state

For model under consideration we can easily obtain the exact
phase diagram in the (�, �) plane in the ground state (i.e. at T = 0).
At these conditions total energy for any ordered phase can be cal-
culated from the Hamiltonian directly since each ordered phase
is characterized by specific symmetry properties which determine
the arrangement of differently oriented molecules over the surface.
In this case stability of each phase is determined by minimum of
total energy of the system at given value of chemical potential.

As we assume all the nearest-neighbor interactions are infinite
repulsive the model predicts the following ordered structures with
different densities: c(4 × 4)4, c(3 × 3)4–1, c(2 × 2) being schemati-
cally shown in Fig. 2. Moreover, there exists a gas phase which has
got the energy equal to zero in the ground state.

Let us consider the cluster consisting of 12 × 12 sites. This size of
cluster is a minimal lattice size on which all elementary structures
of appearing phases are packed. Assuming (−� −�) as adsorp-
tion energy per molecule with m2 = 4 and (–�) adsorption energy
for molecule with m1 = 1 the total energy according to each above
ordered structure (see Fig. 2) is equal:

˝1 = 0, (2)

˝2 = −18� − 18�, (3)

˝3 = −16� − 32�, (4)

˝4 = −72�, (5)

where ˝1 is total energy for empty lattice (lattice gas (LG)); ˝2, ˝3
and ˝4 is total energy for the structures c(4 × 4)4, c(3 × 3)4–1 and
c(2 × 2) respectively.

The existence condition for LG is ˝1 < ˝2. In terms of expres-
sions (2) and (3) this condition can be written as:

� < −� (6)

Analogically, we obtain � < 1/7� the existence condition for the
structure c(4 × 4)4, c(3 × 3)4–1 and c(2 × 2):

� <
1
7

�, (7)

� <
2
5

�, (8)

and

� >
2
5

� (9)

respectively. Thus, we build phase diagram for the system consid-
ered in the ground state (Fig. 3).

4. Methods

The calculation of the isotherms, the surface coverage or the
phase diagrams as the function of the gas phase pressure (chemical
potential) is a rather difficult problem for the model under consid-
eration. In general, the two-dimensional multi-center adsorption
model for which the exact analytic solution can be obtained does
not exist. For the mono-center adsorption that model is well known
use one of the approximate methods suitable for our purposes.
The most suitable techniques for our model are the well known in
the field of the modern theoretical physics transfer-matrix method
(TMM) and Monte Carlo method.
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.1. Transfer-matrix technique

The heart of this method is to replace the difficult problem of
he grand partition function calculation for the two-dimensional
attice model by the simpler problem of calculation of the largest

agnitude eigenvalue and the eigenvector corresponding to this
igenvalue for some matrix [22–27]. In the framework of this tech-
ique the two-dimensional lattice is replaced by the strip that is

nfinite in one direction and has finite width M in the perpendicular
irection. TMM gives the exact values of the grand partition func-
ion for this semi-infinite system. Obviously, with the increasing
the calculated quantities tend to the exact values for the infi-
ite two-dimensional lattice. Note that the local quantities such as

sotherms are dependent on the nearest environment and indepen-
ent of whether or not there is long range order. Therefore, using

ig. 3. Ground state phase diagram for the model. The solid line separates the regions
f stability of LG and c(4 × 4)4 ordered phase, while dash line and dot line separate
he regions of stability of the phases c(4 × 4)4–c(3 × 3)4–1 and c(3 × 3)4–1–c(2 × 2),
espectively.
ures of adlayer.

even relatively small M values it is possible to yield practically exact
results. For our model the each cell can be in six states marked by the
numbers 0–5 in Fig. 1. The calculations have been carried out with
the value M = 12. As it is going to show below, we must use values M
which are a multiple of twelve, however, already the value M = 24
was too large for our computer resources. The transfer-matrix can
be written in the following form

T = DAD, (10)

where D is a diagonal matrix. For the model under consideration a
central matrix A can be represented as a M-fold tensor product

A = t ⊗ t ⊗ t ⊗ . . . ⊗ t ⊗ t︸ ︷︷ ︸
M

, (11)

where t is a 6 × 6 matrix. The latter expression allows to construct a
very effective numerical algorithm [26] for calculation of the largest
magnitude eigenvalue and the eigenvector corresponding to this
eigenvalue.

4.2. Monte Carlo simulation scheme

The thermodynamic properties of the model have been inves-
tigated with standard importance sampling Monte Carlo method
[27]. Square lattice of M = L × L size with periodic boundary con-
ditions is considered as surface model. Note the linear lattice size
is chosen for the adlayer structures to be not perturbed. Calcula-
tions are carried out with the values L = 96 and L = 24; 36; 48; 60 for
the simulation of isotherms and for finite-size scaling procedures,
respectively. Thermodynamic equilibrium is reached by spin-flip
(Glauber) dynamics and diffusion relaxation (Kawasaki dynamics).
To simulate adsorption isotherms successive configurations of the
adlayer are generated using Metropolis transition probabilities [28]
in the grand canonical ensemble. For a given value of � and T the

initial configuration is generated. Any change in overlayer struc-
ture has been accepted with unit probability if it resulted in the
decrease the system energy and, otherwise, has been rejected if
r > exp(−dH/kBT), where r is random number such that 0 < r < 1. The
Hamiltonian difference of such change is dH.



1 ineering Journal 154 (2009) 107–114

f
u
u
e
t

a
a
4
a

�

�

�

�

�

w
i
c

�

a
(

�

fi
s
s
o
b
l
(
t
t
s
a
c

ϕ

w
a
s
p
a
c
m
i
o
p

m
e

ϕ3×3 = �i,max −
8

j,j /= i

�j. (20)
10 V.F. Fefelov et al. / Chemical Eng

The first 106 Monte Carlo steps (MCS) of each run had been per-
ormed to establish the equilibrium and the next 106 MCSs were
sed to compute averages. However, in the vicinity of critical points
p to 107 MCS had to be used because fluctuations are greatly
nhanced. Note, one Monte Carlo step corresponds to one run over
he entire lattice.

Thermodynamic quantities such as (12) amount of spaces
dsorbed on the lattice (density) �(�); (13) coverage by molecules
dsorbed on 1 site �1(�); (14) coverage by molecules adsorbed on
site �4(�); and (15) total coverage of the lattice �(�) are obtained

s simple averages:

(�) = 1
M

(
1
4

∑
i

ni +
∑

i

ci

)
, (12)

1(�) = 1
M

∑
i

ci, (13)

4(�) = 1
M

∑
i

ni, (14)

(�) = �1(�) + �4(�). (15)

Error bars for these values are given by

=
√

(〈A2〉 − 〈A〉2)
(

2�A

t

)
, (16)

here A is the value of interest; �A is correlation time for A and t
s observation time. In order to determine the correlation time we
alculated the normalized time autocorrelation function

A(t) = 〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
(17)

nd then we interpreted the correlation time as time integral of �A
t) [27]

A =
∫ ∞

0

�A(t)dt. (18)

The coverage � is the usual order parameter in the presence of a
rst-order phase transition; however, it does not apply to ordered
tructures. In that case, it is convenient to consider the possible
tructure of adlayer and related order parameter ϕ. Let us define
rder parameter for c(4 × 4)4 phase (Fig. 2). Due to the periodic
oundary conditions the degeneracy of this phase depending on

ocation of left top segment of the molecule adsorbed on 4 sites
segment pointed as “3” on Fig. 1) is equal to 16. These configura-
ions allow us to decompose the original lattice in such specific way
hat all ordered configurations of the phase put into eight different
ublattices (see Fig. 4). The coverage on each sublattice is denoted
s �i. In such considerations, order parameter for the phase c(4 × 4)4
an be defined as

4×4 = |�1 − �2| + |�3 − �4| + |�5 − �6| + |�7 − �8|, (19)

here sum the differences (in absolute value) between the cover-
ge corresponding to two complementary sublattices. When the
ystem is disordered all sublattices are equivalent and the order
arameter is minimal. However, when c(4 × 4)4 structure appears
ll left top segments of the molecule adsorbed on 4 sites are allo-
ated in one sublattice. That is the coverage of this sublattice (�i) is
aximal (�i = 1) and the coverage of the complementary sublattice

s zero. In addition, the rest of the sum is zero or minimum. Thus,

rder parameter ϕ4×4 is convenient for defining of order–disorder
hase transition.

Other appearing phase is c(3 × 3)4–1 phase consisting with
olecules adsorbed on 4 and 1 sites, simultaneously. The degen-

racy of this configuration equals to 9, so we should separate the
Fig. 4. Sublattices for calculating of order parameter ϕ4 × 4. �i is coverage of each
sublattice depending on the location of left top segment of the molecule adsorbed
on 4 sites.

original lattice into nine different sublattices (Fig. 5). To calculate
the coverage of the given sublattice we have to assume that �i =
�1

i
+ �2

i
, where �1

i
denotes coverage of part of sublattice assumed

for only left top segment of the molecule adsorbed on 4 sites. On the
other hand, �2

i
is coverage of that part of sublattice assumed only for

on top adsorbed molecule. Further, the sublattice with maximum
coverage is determined, and the order parameter can be calculated
as

1∑
Fig. 5. All possible sublattices for calculating of order parameter ϕ3 × 3. �1
i

denotes
coverage of part of sublattice assumed for only left top segment of the molecule
adsorbed on 4 sites. On the other hand, �2

i
is coverage of that part of sublattice

assumed only for on top adsorbed molecule.
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arise in the system, but the amount the adsorbed spaces change
continuously.

This specific phase behavior has simple physical interpretation.
At the high values of the � it is energetically efficient to adsorb
V.F. Fefelov et al. / Chemical Eng

We define the last c(2 × 2) ordered phase in the system with
raditional order parameter [19]

2×2 = |�1 − �2| (21)

here �1 and �2—coverage of the corresponding sublattices. Error
ars for all order parameters are determined with Eq. (16).

The quantities related to the order parameter, such as the sus-
eptibility 
, and the reduced fourth-order cumulant UL introduced
y Binder [27,29], can be calculated as:

= L2(〈ϕ2〉 − 〈ϕ〉2)
T

, (22)

L = 1 − 〈ϕ4〉
3〈ϕ2〉2

. (23)

According to the standard finite-size scaling theory the
rder–disorder transition in a finite system is rounded and shifted

n contrast to infinite system at M → ∞, so the transition parame-
ers should be determined from suitable scaling relationships [27].
ne of the them relies on the extrapolation of the positions Tc(L) (or
c(L)) of the susceptibility maxima 
(T)max (or 
(�)max). For this
uantity one expects

c(L) = �c(∞) + const · L−1/�, L → ∞, (24)

here � is standard critical exponent of correlation length.
Other possible route to estimate the true transition temperature

or chemical potential) can be determined from the plots UL(T) (or
L(�)) obtained for various values of L, because all such curves have
n intersection point at Tc (or �c) and the fixed value U∗

ϕ. The value
∗
ϕ characterizes the universality class of a transition. The critical
xponents can be evaluated by using the well known finite-size
caling techniques [27,30].

In case of susceptibility and Binder’s fourth-order cumulant it is
ot possible to estimate the error in value using the direct method
Eq. (16)). Therefore, we used the bootstrap method [35].

The multiple-histogram reweighting [31–34] was applied to
stimate first-order phase transitions. The coexisting curves were
etermined according to a “two-state approximation” from the
ensity distribution [33,34]

(�) =
∑

u

P(�, u), (25)

here u is the potential energy of the system and P(�,u) is the two-
imensional histogram. In the case of a first-order transition the
ensity distribution p(�) has a double peaked structure. The precise

ocation of a coexistence point is achieved by tuning the chemical
otential at a given temperature until the areas under both peaks
ecome the same.

. Results and discussion

.1. Isotherms and coverage curves

The set of isotherms for different values of � obtained with
onte Carlo (Fig. 6(a)) and transfer-matrix technique (Fig. 6(b))

s shown in Fig. 6. The identity of presented curves indicates that
ur results are true. Note, we did not show the error bars on
igs. 6–8 because ones are very small and not exceed 2%. There
re three evident plateaus appearing at sufficiently high values of

in the isotherms. Fig. 7 shows isotherm at � = 30 kJ/mol with
orresponding ordered structures of adlayer. The steps between

he plateaus indicate first-order phase transitions which are char-
cterized by abrupt change of free energy of system. In the
onsidered system it is disclosed by discontinuity of amount of
dsorbed spaces p(�). Moreover, size of this jump is unimpor-
ant in terms of the classification of phase transitions. On the
Fig. 6. Set of isotherms for different values of A obtained with Monte Carlo (a) and
transfer-matrix technique (b).

other hand, “’LG-c(4 × 4)4” phase transition is typical second order
phase transition. In this case at critical point a symmetry element
Fig. 7. The isotherm calculated at T = 400 K, � = 30 kJ/mol with ordered structures.
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The coexistence density distributions for, T = 400 K, � = 30 kJ/mol
for �* = 12.00 ± 0.05 kJ/mol are shown in Fig. 10. In order to deter-
mine the critical �* for the different temperatures in case of
second-order phase transition we have used both methods dis-
cussed in Section 4a, the extrapolation of the positions �c(L) of
ig. 8. Coverage versus chemical potential curves for different values A obtained
ith Monte Carlo (a) and transfer-matrix technique (b).

n four sites. Oppositely, when values � are low (0 or 10 kJ/mol)
dsorption on four sites is steric complicated.

In the Fig. 8 we presented coverage versus chemical potential
urves for different values � obtained with Monte Carlo (Fig. 8(a))
nd transfer-matrix technique (Fig. 8(b)). One can see that these sets
f curves are identical. It points out the reliability of our results. For
ufficiently large values of � there are three well-defined plateaus
n the curves corresponded to above mentioned ordered phases.
ach ordered phase has its own coverage: for c(4 × 4)4 is � = 0.5;
or c(3 × 3)4–1–� = 0.55(5); for c(2 × 2)–� = 0.5. Note, that in the case
f ordered phases consisting with molecules with the same ori-
ntation in adlayer, c(4 × 4)4 and c(2 × 2), coverages equal to 0.5.
owever, complex structure formed by molecules adsorbed as on
ne as on four adsorption sites (c(3 × 3)4–1) has the largest coverage
= 5/9.

It should be marked that the first-order phase transition
(3 × 3)4–1–c(2 × 2) goes with decreasing of coverage. That is the
overage dependence of chemical potential is nonmonotonic. It
eans when pressure in the gas phase growths the amount of

mpty adsorption sites growths too. This unusual phenomenon
as not reported in literature before. Nonmonotonic changing of

overage is explained by appearing of complex phase c(3 × 3)4–1.
.2. Phase diagram

For sufficiently large values of the � value the system under-
oes the phase transitions. Depending on the temperature region
Fig. 9. Density distributions for T = 500 K, � = 30 kJ/mol and different values of � at
first-order phase transition c(4 × 4)4–c(3 × 3)4–1.

there are two first-order and three second-order phase transition
in the adlayer under consideration. The first-order phase transi-
tions take place between all mentioned above ordered structures:
c(4 × 4)4–c(3 × 3)4–1 and c(3 × 3)4–1–c(2 × 2) transitions. On the
other hand, second-order phase transitions occur when some sym-
metry element appears in the system, so in our case we have
c(4 × 4)4, c(3 × 3)4–1, c(2 × 2) orderings.

For the first-order phase transitions between c(4 × 4)4 and
c(3 × 3)41 phases we have monitoring dependence of p(�) for differ-
ent values of temperature and chemical potential. The coexistence
density distributions for T = 500 K and � = 30 kJ/mol are shown in
the Fig. 9. One notes an existence of two pronounced peaks with the
same area under each of them corresponding to different phases for
�* = 3.85 ± 0.05 kJ/mol. That means �* is the coexistence value of
the chemical potential under above conditions. The coexisting den-
sities of the two coexisting phases correspond to the mean densities
under these two peaks. The same calculations were performed for
the first-order phase transitions between c(3 × 3)41–c(2 × 2) phase.
Fig. 10. Density distributions for T = 400, � = 30 kJ/mol for coexistence value
of chemical potential �* = 12.00 ± 0.05 kJ/mol at first-order phase transition
c(3 × 3)4–1–c(2 × 2).
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Fig. 11. Plots for estimation of second-order phase transitions at � = 30 kJ/mol: (a)
the 
(�) at T = 400, calculated for the different sizes of the lattice; (b) extrapolation
of the maximum in susceptibility 
(�)max; (c) reduced four-order cumulants of the
order parameter UL versus � for several lattice sizes.
Fig. 12. The phase diagram of the model at � = 30 kJ/mol.

susceptibility maxima 
(�)max and the crossing in the cumulants.
It should be mentioned that order parameter data were partly cor-
related, but it had not an essential effect on size of statistical errors,
because the observation time was large enough. Fig. 11(a) shows
the plot of the 
(�) at T = 400 K, � = 30 kJ/mol calculated for the
different sizes of the lattice.

From extrapolation of the maximum in susceptibility 
(�)max as
shown in Fig. 11(b) one can estimate the critical value of �* tuning
the � till all points 
(�)max lay into the line. In Fig. 11(c) we have
plotted the reduced four-order cumulants of the order parameter
UL(�) versus � for several lattice sizes. In vicinity of the critical
point, cumulants have a strong dependence on the lattice size. How-
ever, at the critical point the cumulants tend toward the nontrivial
value U∗

ϕ , irrespective of system size in scaling limit. Thus, plot-
ting UL(�) for different lattice sizes yields an intersection point
U∗

ϕ , which gives us sufficiently accurate estimation of the critical

value of �* in the infinite system (Fig. 11(c)). Note that extrapola-
tion of the maximum in susceptibility 
(�)max gives a critical �*

in agreement with that from the intersection of Binder’s cumu-
lants. In Fig. 12 we have presented the phase diagram of the adlayer
consisting with complex molecules with different orientation for

Fig. 13. Surface plot �(�,T) calculated with transfer-matrix technique.
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ig. 14. The comparison of Monte Carlo simulation phase diagram (white symbols)
ith one estimated with transfer-matrix technique (surface plot). Scale of coverage

s shown on the inset.

= 30 kJ/mol. There are three well-defined regions in the phase
iagram corresponding to the order structures shown in Fig. 2.
ll appearing phases have chess-like symmetry, but: (i) c(4 × 4)4
hase consists of molecules with the same orientation in adlayer
adsorbed on four lattice sites); (ii) phase c(3 × 3)4–1 consists of

olecules with different orientation in adlayer (adsorbed both on
ne and on four sites); (iii) c(2 × 2) appearing at higher pressure
hen others again consists of molecules with the same orientation
n adlayer (but adsorbed on one lattice sites).

Additionally in the framework of the transfer-matrix method
e calculated the set of surface coverage functions from chemical
otential for different temperatures and stacked them into the sur-

ace plot �(�, T) which corresponded to our phase diagram in (�,
) coordinates calculated with Monte Carlo technique (Fig. 13).

In Fig. 14, we have shown the phase diagram obtained for the
ystem under consideration with Monte Carlo simulation in com-
arison with �(�,T) plot estimated by transfer-matrix technique.
he qualitative agreement between both results is rather good.

. Conclusion

In this paper we report an attempt to study general statistics of
dlayers consisting with complex organic molecules on solid–gas
nterface. The effects of complex form of the adsorbing molecule,
ossibility of different orientation of the molecule in adlayer, multi-
le structure of the surface complexes have been investigated with
onte Carlo and transfer-matrix technique. Having investigated

odel under consideration we have found the surprising phe-

omenon. Namely, it has turned out that coverage dependence of
hemical potential in the system can be nonmonotonic. That means,
hen pressure in gas phase increases the amount of empty adsorp-

ion sites increases too. Though an isotherm, as it follows from

[
[
[
[
[
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general thermodynamic lows, is monotonic increasing function.
The reason for such phase behavior of the adlayer is the sequence of
appearing phases, each of which is characterized by particular ori-
entation of the adsorbing molecule in surface monolayer. Note, that
existing of phases with different orientation of adsorbed molecules
in adlayer is the experimentally confirmed fact.

Thus, we can do the following conclusions: the simplest model
elaborated for SAMs shows rich phase diagram analogous to that
for real SAMs; the structures of the model ordered phases are also
analogous to the structures of SAMs; for SAMs the non-monotonous
dependence of the total coverage on the pressure is possible, i.e. at
the increase of pressure the empty surface area can grow that can
take some effect on physicochemical processes on surface.
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14] W. Rżysko, A. Patrykiejew, K. Binder, Phys. Rev. B 72 (2005) (Art. No. 165416).
15] V.F. Cabral, C.R.A. Abreu, M. Castier, F.W. Tavares, Langmuir 19 (2003)

1429.
16] T. Schilling, S. Pronk, B. Mulder, D. Frenkel, Phys. Rev. E 71 (2005) (Art. No.

036138).
[17] M. Porto, H.E. Roman, Phys. Rev. E 62 (2000) 100.
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